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Abstract. Let F [L] be a loop algebra of a loop L over a field
F . In this paper, we obtain the unit loop of the loop algebra
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finite field of characteristic different from 3.
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1 Introduction

An alternative ring is a ring in which x(xy) = x2y and (yx)x = yx2 are
identities. A loop L whose loop ring R[L] over some commutative, associa-
tive ring R with unity and of characteristic different from 2 is alternative,
but not associative is called a RA(Ring Alternative) loop. RA2 loop is the
loop whose loop ring is alternative only when characteristic of R is 2. Let G
be a non-abelian group, g0 ∈ Z(G) and g 7→ g∗ be an involution of G such
that g∗0 = g0 and gg∗ ∈ Z(G) for every g ∈ G. For an indeterminate u, let
L = G ∪̇ Gu. Extend the multiplication in G to L by the rules

g(hu) = (hg)u, (gu)h = (gh∗)u, (gu)(hu) = g0h
∗g, for all g, h ∈ G.

The loop L so constructed is a Moufang loop and is denoted by M(G, ∗, g0).
When the involution is the inverse map and g0 = 1, the identity element of
G, then M(G,−1, 1) is denoted as M(G, 2).

The problem of determining the structure of the unit group of a group
ring has always been a challenge. Associative loops are groups and not much
work has been done in the direction of loop rings. So, the study of the unit
loop of loop ring is equally important.

Authors [5, 6, 7] determined the structure of the unit loops of finite loop
algebras of RA loops of order 32, 64 and in general of seven non-isomorphic
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classes of indecomposable RA loops. Ferraz, Goodaire and Milies [2]
studied the semisimple loop algebras of RA loops. But the structure of
the unit loops of loop algebras of RA2 loops is still not known. Note that
M(S3, 2) is RA2 loop and is the smallest Moufang loop. In this paper, we
characterize the structure of the unit loop of the loop algebra F [L], when L
is M(S3, 2) and F is a finite field of characteristic different from 3.

The paper is organized as follows: In Section 2, we give some notations
and discuss some preliminary results which will be used to prove our main
results. In Section 3, we give the structure of the unit loop of F [L] when the
characteristic of F is 2 (Theorem 3.1) and determine the structure of the
unit loop of F [L] when the characteristic of F is different from 2, 3 (Theorem
3.2).

2 Preliminaries

In this section, we discuss some results which will be used further.

Chein and Pflugfelder [1] determined the smallest Moufang Loop,
denoted by M(S3, 2). Vojtěchovský [8] gave the presentation of M(S3, 2)
as

M(S3, 2) = S3 ∪̇ S3u ∼= 〈 a, b, u | a3, b2, u2, abab, (au)2, (bu)2, (ab.u)2 〉,

which is obtained from S3
∼= 〈 a, b | a3, b2, abab 〉, the symmetric group of

degree 3.

For a normal subloop N of L, the canonical map ε : L→ L/N lifts to an

R-linear ring epimorphism εN : R[L] → R[L/N ] defined as εN

(∑
l∈L

αll

)
=∑

l∈L
αlε(l). We denote the kernel of εN by ∆R(L,N).

Proposition 2.1 [3, Ch. VI, Lemma 1.2] Let F [L] be the loop algebra of a
Moufang loop L and N be a finite subloop of L such that |N | is invertible in

F . Then Ñ = 1
|N |
∑
n∈N

n is an idempotent in F [L]. Moreover if N is normal

in L, then

(a) F [L] = (F [L])Ñ ⊕ F [L](1− Ñ)

(b) (F [L])Ñ ∼= F [L/N ] and F [L](1− Ñ) = ∆F (L,N).

We shall use the following notations:
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Table 1: Multiplication table of M(S3, 2).
. 1 a a2 b ab a2b u au a2u bu abu a2bu

1 1 a a2 b ab a2b u au a2u bu abu a2bu

a a a2 1 ab a2b b au a2u u a2bu bu abu

a2 a2 1 a a2b b ab a2u u au abu a2bu bu

b b a2b ab 1 a2 a bu abu a2bu u au a2u

ab ab b a2b a 1 a2 abu a2bu bu a2u u au

a2b a2b ab b a2 a 1 a2bu bu abu au a2u u

u u a2u au bu abu a2bu 1 a2 a b ab a2b

au au u a2u abu a2bu bu a 1 a2 a2b b ab

a2u a2u au u a2bu bu abu a2 a 1 ab a2b b

bu bu abu a2bu u a2u au b a2b ab 1 a a2

abu abu a2bu bu au u a2u ab b a2b a2 1 a

a2bu a2bu bu abu a2u au u a2b ab b a a2 1

L′ the commutator-associator subloop of the loop L
G′ the commutator subgroup of the group G
Cn cyclic group of order n
M(2, F ) ring of all 2× 2 matrices over the field F
F ∗ F\{0}
Z(R) Zorn’s vector matrix algebra over a commutative

and associative ring R (with unity)
GLL(2, R) General Linear Loop of degree 2 over R
J(F [L]) Jacobson radical of alternative loop algebra F [L]

For more definitions and terminologies, we refer the reader to [3].

3 The Unit Loop of F [L]

In this section, we determine the structure of the unit loop of a finite loop
algebra of L = M(S3, 2).

When char F = 2, we prove the following result.

Theorem 3.1 Let F be a finite field such that |F | = 2n, L = M(S3, 2).
Then

U(F [L]/J(F [L])) ∼= F ∗ ×GLL(2, F )

and 1 + J(F [L]) ∼= C3n
2 , an elementary abelian 2-group of order 23n.

Proof. Since char F = 2, F [L] is an alternative loop algebra.
From [4, Th 2.1], the matrix representation of S3 is

θ : S3 → F ∗ ×GL(2, F )



On the finite Loop Algebra of the smallest Moufang loop M(S3, 2) 71

given by

a 7→
(

1,

[
0 1
1 1

])
,

b 7→
(

1,

[
1 1
0 1

])
.

Then the matrix representation of L as

φ : L→ F ∗ ×GLL(2, F )

defined by

a 7→
(

1,

[
0 (0, 1, 0)

(0, 1, 0) 1

])

b 7→
(

1,

[
1 (0, 1, 0)

(0, 0, 0) 1

])
and

u 7→
(

1,

[
0 (0, 0, 1)

(0, 0, 1) 0

])
It can be easily checked that φ is a well defined loop homomorphism. Thus
φ can be extended to an F -algebra homomorphism

φ∗ : F [L]→ F ⊕ Z(F ).

Let X = α11 + α2a + α3a
2 + α4b + α5ab + α6a

2b + α7u + α8au + α9a
2u +

α10bu+ α11abu+ α12a
2bu ∈ Ker φ∗, where α′is ∈ F.

Therefore φ∗(X) = 0 gives the following system of equations
α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8 + α9 + α10 + α11 + α12 = 0
α1 + α3 + α4 + α6 = 0
α8 + α9 + α11 + α12 = 0
α2 + α3 + α4 + α5 = 0
α7 + α9 + α10 + α12 = 0
α8 + α9 + α10 + α11 = 0
α2 + α3 + α5 + α6 = 0
α7 + α8 + α10 + α12 = 0
α1 + α2 + α4 + α6 = 0
By solving this system of equations, we get
α1 = α2 = α3,
α4 = α5 = α6,
α7 = α8 = α9,
α10 = α11 = α12 and
α1 = α4 + α7 + α10.
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Thus,

X = α4(1 + a+ a2 + b+ ab+ a2b) + α7(1 + a+ a2 + u+ au+ a2u)

+ α10(1 + a+ a2 + bu+ abu+ a2bu).

= α4e1 + α7e2 + α10e3.

Also, it can be verified that the set S = {e1, e2, e3} is linearly independent
over F . Thus S forms a basis of Ker φ∗ as a vector space over F . Since
characteristic of F is 2, therefore e2

1 = 0, e2
2 = 0 and e2

3 = 0. Note that

ei.ej = 1 + a+ a2 + b+ ab+ a2b+ u+ au+ a2u+ bu+ abu+ a2bu

for all i, j = 1, 2, 3. It follows that each element of Ker φ∗ is quasiregular
with quasi-inverse as itself which implies that Ker φ∗ is a quasiregular ideal
of F [L], which implies that Ker φ∗ ⊂ J(F [L]). Table 2 implies that φ∗ is
onto, so we have φ∗(J(F [L])) ⊂ J(F ⊕ Z(F )) = 0 and hence J(F [L]) ⊂ Ker
φ∗. This gives J(F [L]) = Ker φ∗. Hence, F [L]/J(F [L]) ∼= F ⊕ Z(F ).

Considering V1 = 1 + J(F [L]), an element h of V1 is of the form h =
1 + a1.e1 + a2.e2 + a3.e3, where a′is ∈ F. Note that

(ei.ej).ek = ei.(ej.ek) = 0 for all i, j, k = 1, 2, 3.

Thus V1 is an abelian group and h2 = 1 for all h ∈ V1, which gives V1
∼=

(C2 × C2 × C2)n. �

The following theorem gives the structure of the unit loop of F [L], when
the characteristic of field F is different from 2, 3.

Theorem 3.2 Let F be a finite field of characteristic different from 2, 3 and
L = M(S3, 2). Then

U(F [L]) ∼= 4F ∗ × U(A),

where A is a nonassociative simple algebra of dimension 8 over the field F .

Proof. We know that L′ = G′ = {1, a, a2} = 〈a〉.

Therefore L̃′ =
1 + a+ a2

3
is an idempotent in F [L].

From Theorem 2.1,
F [L] = F [L/L′]⊕ (F [L])f,

where f = 1− L̃′.
Now

L/L′ = 〈 a, b, u | a, a3, b2, u2, abab, (au)2, (bu)2, (ab.u)2 〉
= 〈 b, u | b2, u2, (bu)2 〉
∼= C2 × C2.
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Table 2: Ontoness of φ∗.

Basis element of F ⊕ Z(F ) Preimage under φ∗(
1,

(
0 (0, 0, 0)

(0, 0, 0) 0

))
1 + a+ a2

(
0,

(
1 (0, 0, 0)

(0, 0, 0) 0

))
a2 + ab(

0,

(
0 (1, 0, 0)

(0, 0, 0) 0

))
u+ a2bu(

0,

(
0 (0, 1, 0)

(0, 0, 0) 0

))
1 + b(

0,

(
0 (0, 0, 1)

(0, 0, 0) 0

))
a2u+ abu(

0,

(
0 (0, 0, 0)

(1, 0, 0) 0

))
u+ bu(

0,

(
0 (0, 0, 0)

(0, 1, 0) 0

))
1 + a2b(

0,

(
0 (0, 0, 0)

(0, 0, 1) 0

))
au+ abu(

0,

(
0 (0, 0, 0)

(0, 0, 0) 1

))
a+ ab

Thus F [L/L′] ∼= 4F.
Next we have to determine (F [L])f. We know from [4](Theorem 2.3),

F [S3] = F [S3/S
′
3]⊕ (F [S3])f ∼= 2F ⊕M(2, F ).

We first determine the isomorphism between (F [S3])f and M(2, F ). An
element of (F [S3])f is of the form,

(α1.1 + α2.a+ α3.a
2 + α4.b+ α5.ab+ α6.a

2b)

(
2− a− a2

3

)
= β1

2− a− a2 + 2b− a2b− ab
6

+ β2
a− a2 − ab+ a2b

2

+ β3
−a+ a2 − ab+ a2b

6
+ β4

2− a− a2 − 2b+ ab+ a2b

6
(1)
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where

β1 =
2α1 − α2 − α3 + 2α4 − α5 − α6

2
, β2 =

α2 − α3 − α5 + α6

2
,

β3 =
−3α2 + 3α3 − 3α5 + 3α6

2
, and β4 =

2α1 − α2 − α3 − 2α4 + α5 + α6

2
.

It can be easily checked that the set

B = {E1 =
2− a− a2 + 2b− a2b− ab

6
, E2 =

a− a2 − ab+ a2b

2
,

E3 =
−a+ a2 − ab+ a2b

6
, E4 =

2− a− a2 − 2b+ ab+ a2b

6
}

is linearly independent over F .
So, B forms a basis of (F [S3])f over F .

Thus M(2, F ) is isomorphic to (F [S3])f by defining

e11 7→ E1

e12 7→ E2

e21 7→ E3

e22 7→ E4

where eij denotes the 2 × 2 matrix whose ij-th entry is 1, and all other
entries are 0.

Consider the set
B1 = {E ′1 = E1 + E4, E

′
2 = E2 − E3, E

′
3 = E2 + E3, E

′
4 = E1 − E4}.

Clearly B1 forms a basis of (F [S3])f over F . So, (F [S3])f is a vector space
with basis B1 over the field F .

Table 3: Multiplication table of the basis elements of (F [S3])f.

. E ′1 E ′2 E ′3 E ′4

E ′1 E ′1 E ′2 E ′3 E ′4

E ′2 E ′2 −E ′1 E ′4 −E ′3
E ′3 E ′3 −E ′4 E ′1 −E ′2
E ′4 E ′4 E ′3 E ′2 E ′1

Thus (F [S3])f is an associative simple algebra over the field F with
identity element as E ′1.
Now dimFF [L] = 12 and dimFF [L/L′] = 4, this implies dimF (F [L])f = 8.
We have

(F [L])f ∼= (F [S3]⊕ F [S3]u)f
∼= (F [S3])f ⊕ (F [S3]f)u
∼= M(2, F )⊕ (M(2, F )u)
∼= A.
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A is an 8-dimensional non associative algebra with the basis {E ′1, E ′2, E ′3, E ′4,
E ′5, E

′
6, E

′
7, E

′
8} and identity element as E ′1. Here E ′5 = E ′1u,E

′
6 = E ′2u,E

′
7 =

E ′3u,E
′
8 = E ′4u.

Table 4: Multiplication table of the basis elements of (F [L])f ∼= A.
. E ′1 E ′2 E ′3 E ′4 E ′5 E ′6 E ′7 E ′8

E ′1 E ′1 E ′2 E ′3 E ′4 E ′5 E ′6 E ′7 E ′8

E ′2 E ′2 −E ′1 E ′4 −E ′3 E ′6 −E ′5 −E ′8 E ′7

E ′3 E ′3 −E ′4 E ′1 −E ′2 E ′7 E ′8 E ′5 E ′6

E ′4 E ′4 E ′3 E ′2 E ′1 E ′8 −E ′7 −E ′6 E ′5

E ′5 E ′5 −E ′6 E ′7 E ′8 E ′1 −E ′2 E ′3 E ′4

E ′6 E ′6 E ′5 E ′8 −E ′7 E ′2 E ′1 −E ′4 E ′3

E ′7 E ′7 E ′8 E ′5 −E ′6 E ′3 −E ′4 E ′1 E ′2

E ′8 E ′8 −E ′7 E ′6 E ′5 E ′4 E ′3 −E ′2 E ′1

We claim that A is a simple algebra. So we just have to prove that f is
a primitive idempotent of F [L].
Let f = x+ yu be the central element of F [L].

This implies gf = fg ∀ g ∈ S3

⇒ g(x+ yu) = (x+ yu)g ∀ g ∈ S3

⇒ gx+ yg.u = xg + yg−1.u ∀ g ∈ S3

⇒ yg = yg−1 ∀ g ∈ S3

⇒ yg2 = y ∀ g ∈ S3 (∗)

For g = a, a2, (∗) gives ya2 = y, ya = y. Thus ya+ ya2 = 2y implies yf = 0.
If possible, suppose f is not primitive in F [L]. That is, f = f1 + f2, where
f1 = x1 +y1u and f2 = x2 +y2u. Then fi = fif = (xi +yiu)f = xif ∈ F [S3].
But f is primitive in F [S3]. So either f1 = 0 or f2 = 0. This implies f is a
primitive idempotent in F [L]. Hence F [L] ∼= 4F ⊕A. �
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