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Abstract. An increasing sequence of integers, B, is given for
which there exists a family of ergodic, infinite measure preserving
transformations Tα, 0 ≤ α ≤ 1 so that (1) Tα is of α-type and
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Introduction

Two properties, first introduced in 1970 by Hajian and Kakutani [8], that
differentiate infinite measure preserving transformations from finite measure
preserving transformations are exhaustive weakly wandering sequences and
α-type, 0 ≤ α < 1. That is, a transformation which has an exhaustive
weakly wandering sequence cannot preserve a finite measure; and a trans-
formation which is α-type for 0 ≤ α < 1, cannot preserve a finite measure.

These two properties are usually studied separately. In particular, the
only published example for which the α-type is presented and an explicit ex-
haustive weakly wandering sequence is given is the Hajian-Kakutani trans-
formation (see [8] and Example 3 of [2]).

This example has α = 1
2

and an exhaustive weakly wandering sequence
given as a direct sum of integers ⊕∞i=1{0, 22i−1}. It is easily generalized to
α-type transformations with α = p−1

p
for any integer p > 1 and exhaustive

weakly wandering sequence ⊕∞i=1{0, 2i−1pi} (see Section 3).
For all other α ∈ [0, 1), explicit exhaustive weakly wandering sequences

are not known. This includes α = 0, 1
3

and α irrational to name a few (see
Section 4 for a simple example with α = 1

3
). In addition, it was not known

if a sequence B can be exhaustive weakly wandering for transformations of
different α-type.

We settle these with the following.
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Theorem 1 There exists an increasing sequence of positive integers

B = {0 = b0 < b1 < b2 < · · · }

and there exist ergodic infinite measure preserving maps Tα, 0 ≤ α ≤ 1 so
that Tα is of α-type, B is an Exhaustive Weakly Wandering sequence for
each Tα, and the associated exhaustive weakly wandering sets have measure
one.

The proof is by a cutting-and-stacking construction and generalizes the
Hajian-Kakutani transformation

1 Preliminaries and Definitions

Throughout this paper, all transformations will be, by assumption or con-
struction invertible, ergodic, infinite measure preserving on a non-atomic,
Lebesgue space with a sigma-finite measure (X,B, µ). As usual, statements
and equalities are to be understood as ”modulo sets of measure zero”.

General definitions in ergodic theory can be found in [2] and the books
[1, 5, 6].

The following definitions are included for easy reference.

Definition 1 The transformation T is said to be of α-type for a fixed α ∈
[0, 1] if

lim sup
n→∞

µ(T nA ∩ A) = α · µ(A)

for all A satisfying µ(A) <∞.

For finite measure preserving transformations α = 1 is possible. However,
no finite measure preserving transformation can be of α-type for 0 ≤ α < 1.
In [9] Hamachi and Osikawa showed that for every 0 ≤ α ≤ 1 there exist an
infinite measure preserving invertible ergodic transformation of α-type - but
they gave no indication of the exhaustive weakly wandering sequences.

Definition 2 An infinite set of integers B = {bi} is exhaustive weakly
wandering for the transformation T , if there exists a set of positive measure
W satisfying the two conditions

1. T biW ∩ T bjW = ∅, i 6= j (weakly wandering),

2. X = ∪bi∈BT biW , (exhaustive).
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Note that each sequence B may have more than one set W (for example
if the transformation S commutes with T then the set SW is also an ex-
haustive weakly wandering set for the sequence B). Similarly, each set W is
exhaustive weakly wandering for more than one sequence (for example the
shifted sequence {b+ k : b ∈ B})

It is also possible for the the set W to be of finite or infinite measure.
However, in this paper we will only work with exhaustive weakly wandering
sets of finite measure - in which case, the measure is considered normalized
with µ(W ) = 1.

It follows from Jones and Krengel [10] that exhaustive weakly wandering
sequences exist for all infinite measure preserving ergodic transformations.
Despite this, there are very few transformations for which explicit exhaustive
weakly wandering sequences are known. The Jones and Krengel result is an
existence proof - it gave no explicit exhaustive weakly wandering sequence
and did not touch upon α-type.

There is not a great amount of restrictions in order for a sequence of
integers to be exhaustive weakly wandering for some transformation, but
there are some [3]. However, the Hajian-Kakutani example and the examples
presented here will have strong arithmetic and combinatorial properties and
the results obtained here will depend upon these properties. Specifically,
the exhaustive weakly wandering sequence will be a direct sum of integers
which ”aligns” with the construction of the transformations.

Definition 3 Let Bi be a finite set of integers with 0 ∈ Bi for all i ≥ 1
and the cardinality of each Bi greater than 1. The Direct Sum of the Bi is
⊕∞i=1Bi = {b =

∑∞
i=1 bi} where bi ∈ Bi and bi = 0 for all but finitely many of

the i.

Finite direct sums will also be used, and are defined in the obvious man-
ner. We will be using them for factorizations of finite cyclic groups. The
technique connects factorizations of finite abelian groups to the the cutting-
and-stacking construction and it is this connection which supplies the proof
of exhaustiveness for the more complex examples. The technique is general
enough that it allows one to simultaneously control the α-type and in par-
ticular allows one to obtain any α-type for α ∈ [0, 1]. This, in turn, further
shows that non-isomorphic transformations of different α-type can have the
same exhaustive weakly wandering sequence.

Definition 4 A Finite Cyclic Group for an integer N > 1, as used here,
will simply be GN = {0, 1, 2, . . . N − 1} with addition Modulo N .

Definition 5 G = A⊕ B is a factorization of the finite cyclic group G if
A and B are non-empty subsets of G and every element g ∈ G is a unique
sum g = a+ b (Mod N) where a ∈ A and b ∈ B.
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For the examples presented here, both A and B will be direct sums.

We will also be interested in factorizations of the nonnegative in-
tegers

N = A⊕ B

where both A and B have infinite cardinality.

2 The Hajian-Kakutani Transformation

In this section we review the Hajian-Kakutani transformation (see [8] and
Example 3 in [2]). It was presented originally as a skyscraper construc-
tion, however for generalization purposes we present it here via an alternate
cutting-and-stacking rank-one construction (rank-one simply means that at
each step of the construction there is only one column). In either case, the
transformation is piecewise linear (T ′ = 1 a.e.) on a countable collection of
intervals whose union has infinite Lebesgue measure.

We denote this as (X,B, µ).

The result of the construction will be the following.

Theorem 2 The Hajian-Kakutani transformation is ergodic, infinite mea-
sure preserving. It is of α-type with α = 1

2
. There is a set W with µ(W ) = 1

which is exhaustive weakly wandering under the sequence of integers

B =
∞⊕
k=1

{0, 22k−1} (1)

= {0, 2, 8, 10, 32, 34, · · · }

2.1 Construction

Step 0: Start with W = [0, 1). Consider this as a column C0 of height h0 = 1
and width w0 = 1. The transformation is not defined anywhere yet.

Step 1: Begin by cutting C0 into two equal width subcolumns (i.e. W is
divided into two equal width subintervals). Place two spacer intervals of
width 1/2 above the right subcolumn. Next stack the right hand column
with the spacers above the left hand subcolumn.

This yields column C1 of height h1 = 4 and width w1 = 1/2 (see Figure
1). The transformation is defined as moving linearly up the column. It is
not yet defined on the top level.
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Figure 1: Stage 1 for Hajian-Kakutani Transformation T

Start W = [0, 1)

−→

Cut in half

Add spacers

−→

Column C1

}
W

}
T 2W

Step 2: Cut the column C1 into two equal width subcolumns. Place 8 =
2 · 22 = 2h1 spacer intervals above the right side column. Stack the right
side subcolumn with its spacers above the left side subcolumn (see Figure
2).

This results in column C2 of height h2 = 42 and width w2 = 1/22. The
transformation is defined as mapping each level to the level immediately
above it. This matches the previous definition wherever it was defined. The
transformation is not yet defined on the top level.

Figure 2: Stage 2 of Hajian-Kakutani Construction

}
W

}
T 2W

Column C1 Column C2

}
W

}
W}
T 2W

}
T 2W

}
T 8W

}
T 8W}
T 10W

}
T 10W

}
W ∪ T 2W

}
T 8(W ∪ T 2W )

Step n: Cut column Cn−1 into two equal width subcolumns. Above the right
side subcolumn place 2hn−1 spacer intervals of width wn−1.

This results in column Cn of height hn = 4hn−1 = 4n and width wn =
wn−1/2 = 1/2n. The transformation is again defined as moving up the levels
linearly.
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Remark 1 As a cutting-and-stacking construction, it is well known that the
resulting transformation is ergodic ([6]). Infinite measure preserving is also
clear.

Remark 2 Let L denote the countable collection of all the levels at each
step in the construction. Then it is well known that finite disjoint unions of
members of L generate the the sigma-algebra B.

This will be used in proving the α-type for transformations.

2.2 Observations

The proof of Theorem 2 follows from the following easy observations.

2.2.1 Exhaustive Weakly Wandering Sequence

The exhaustive weakly wandering sequence for the Hajian-Kakutani trans-
formation appears automatically as a direct sum from the construction.

Define Bi = {0, 22i−1} = {0, 2hi−1}. i ≥ 1. From the construction we
have inductively

C1 = W ∪̇T 2W (disjoint)

= ∪̇T bW, b ∈ B1

and

C2 = C1∪̇T 8C1

=
(
W ∪̇T 2W

)
∪̇T 8

(
W ∪̇T 2W

)
= ∪̇T bW, b ∈ B1 ⊕ B2

and in general

Cn = Cn−1∪̇T 22n−1

Cn−1

= ∪̇T bW, b ∈ ⊕ni=1Bi

Taking the limit we conclude that B = ⊕∞i=1Bi is an exhaustive weakly
wandering sequence with exhaustive weakly wandering set W = [0, 1). That
is

X = ∪̇b∈BT bW (disjoint)
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Figure 3: Hajian-Kakutani Construction - 3 Stages
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2.2.2 α-Type

To see that the α-type is α = 1/2, let A denote any set which is a union of
disjoint levels in Cn−1 for some n (see Figure 3).

From the construction, the set A is also a union of disjoint levels in Cn.
Viewing A sitting inside Cn and applying T hn−1 we see that half of A moves
up into the spacer section, while the other half moves onto the top half of
A. Therefore µ(T hn−1A ∩ A) = 1

2
µ(A).

The set A is also a union of disjoint levels in Cn+1 and the same argument
gives µ(T hnA ∩ A) = 1

2
µ(A).

Suppose hn−1 < k < hn. Viewing A as a union of disjoint levels of
Cn+1 we see that at least half of T kA is mapped upward into spacers and so
µ(T kA∩A) ≤ 1

2
µ(A). Since the set A is also a disjoint union of levels in Cm

for all m > n+ 1 we have lim supk→∞ µ(T kA ∩ A) = 1
2
µ(A).

Given an arbitrary set B of finite measure, we can approximate it by
a set A which is a disjoint union of levels in some column and the result
follows.

This completes the proof of Theorem 2.

2.3 A Direct Sum of Integers Associated with W

We have seen that the exhaustive weakly wandering sequence mirrors the
construction and appears naturally as a direct sum (Section 2.2.1). For this
example, a similar result is true for the set W .

Observe that in Column C1, the set W consists of the two intervals, Level
0 and Level 1 (see Figure 1). In Column C2, W consists of the four intervals,
Level 0, Level 1, Level 4 and Level 5 (see Figure 2).

Putting A1 = {0, 1} and A2 = {0, 4}, we have that W is associated to
the levels defined by A1 ⊕ A2.

This holds for higher columns. Suppose W contains Level k of Column
Cn−1. At the next step, Column Cn−1 of height hn−1 is divided in two. This
means that W will contain Level k and Level k + hn−1 of Column Cn.

Hence if we put An = {0, hn−1}, then W consists exactly of Levels a ∈
⊕n1Ai in Column Cn.

We will return to this idea when we discuss factorizations of cyclic groups.
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3 Simple Generalization α = p−1
p

In this section we present a simple generalization of the Hajian-Kakutani
Transformation. The change is to the number of cuts. The generalization is
well known but has never appeared in print. The construction, and hence
proofs, are nearly identical to that for the Hajian-Kakutani transformation.

For a fixed integer p > 1 we define a transformation Vp yielding the
following

Theorem 3 The transformation Vp is ergodic, infinite measure preserving.
It is of α-type with α = p−1

p
. The set W is exhaustive weakly wandering

under the direct sum sequence ⊕∞k=1{0, 2k−1pk}.

3.0.1 Construction

Start with W = [0, 1) = C0.

Step 1: Cut W into p equal width subintervals. Place p spacer intervals over
the right-most subinterval. Stack these, right-on-left, i.e. each interval is
placed above the one to its immediate left (See Figure 4.)

This results in column C1 of height h1 = 2p and width w1 = 1/p.

Step 2: Divide the column C1 into p equal width subcolumns. Above the
right-most subcolumn, place 2p2 spacer intervals. Stack each subcolumn
onto the one to its immediate left. (See Figure 5.)

This results in column C2 of height h2 = 22p2 and width w2 = 1/p2.

Step n: At step n − 1 we have column Cn−1 of height hn−1 = (2p)p−1 and
width wn−1 = 1/pn−1. Cut column Cn−1 into p equal width subcolumns.
Above the right-most subcolumn place 2n−1pn spacer intervals of width 1/pn.
Stack each subcolumn above the one to its immediate left.

This results in column Cn of height hn = (2p)n and width wn = 1/pn.
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Figure 4: Stage 1 for construction of Vp

Start W = [0, 1)
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. . . −→
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... }
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}
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3.0.2 Observations

To see the exhaustive weakly wandering sequence observe that C1 = W ∪̇V pW ;
C2 = C1∪̇V 2p2C1; and in general Cn = Cn−1∪̇V 2n−1pnCn−1. Observe that
2n−1pn = p · (2p)n−1 = p · hn−1 which is the height of the (previous) column
multiplied by the number of cuts made to the (previous) column. That is
define

Bk = {0, 2k−1pk} = {0, p · hk−1} (2)

and conclude the exhaustive weakly wandering sequence is ⊕∞1 Bk.

To see that α = p−1
p

first examine W = C0 as part of column C1. W
consists of the lower p levels. Applying T , p − 1 levels of W move up to
another level of W while the very top level of W moves into the spacers.
Applying T 2 we see two levels of W move into the spacers resulting in a
smaller intersection. The same holds for T k for h0 < k < h1.

Similarly the column Cn consists of p consecutive blocks of height hn
inside of Cn+1. Therefore

µ(T hnCn ∩ Cn) =
p− 1

p
µ(Cn)

for all n.
If hn < k < hn+1 then µ(T kCn∩Cn) < p−1

p
µ(Cn) because more and more

of the pieces of the blocks move into the spacers. From this one duplicates
the analysis for a set A consisting of disjoint unions of levels of Cn and then
use an approximation argument for an arbitrary set of finite measure.

This completes the proof of Theorem 3.
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Figure 5: Stage 2 for construction of Vp
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Cut column C1
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4 A Variation to get α = 1/3 and α = 2/3

In this section we construct two transformations. They will both have the
same exhaustive weakly wandering sequence. The first T{0,0,3} will be of α-
type for α = 2/3. The second T{0,1,2} is a modification of the first and will
be of α-type for α = 1/3.

The analysis of modifying the first to the second will use factorizations
of cyclic groups in order to show that the exhaustive weakly wandering
sequence of the first is also the exhaustive weakly wandering sequence for
the second.

As in the Hajian-Kakutani transformation, the exhaustive weakly wan-
dering sequence ⊕Bi arises automatically as a direct sum. As pointed out in
Section 2.3, there is also a direct sum of integers associated with the set W .
The relation between the two is that for each n,

(
⊕n1 Ai

)
⊕
(
⊕n1 Bi

)
will be

a factorization of the finite cyclic group {0, 1, . . . , hn−1} which corresponds
to the height of column Cn.

Technically these results are subsumed in Theorem 1. However it will be
far simpler to analyze the issues in these two examples before getting to the
larger theorem.
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4.1 Transformation T{0,0,3} with α = 2/3

This example is a straightforward variation of everything that has gone
before.

4.1.1 Construction

Step 0: Start with W = [0, 1) and consider this a column C0 of height h0 = 1
and width w0 = 1.

Step 1: Cut C0 into three equal width subintervals. As before we put all the
spacers above the rightmost subcolumn. In this case, add 3 blocks of 3 · h0
spacer intervals for a total of 9 spacers. As usual, stack each subcolumn
above the one to its immediate left. See Figure 6.

This results in column C1 of height h1 = 4 · 3.

Figure 6: Stage 1 for construction of T{0,0,3}

W = [0, 1)

−→

3 cuts

Add spacers

−→

Stack - C1

T goes up

W

Remark 3 We are writing the height as 4 · 3 because we are viewing it as 4
”blocks” of 3 intervals (see Figure 6). Observe that this corresponds to the
fact that C1 is the disjoint union of 4 images of C0 = W , that is

C1 = ∪̇3k=0T
3kW (disjoint).

Hence define B1 = {0, 3, 2 ·3, 3 ·3} = {0, 3, 6, 9}. Observe that W consists
of levels 0, 1, 2 of column C1. Using this we define A1 = {0, 1, 2}.

This gives the factorization

{0, 1, . . . , h1 − 1} = {0, 1, 2} ⊕ {0, 3, 6, 9}
= A1 ⊕ B1
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Notice at this point it is not necessary to do modular addition.

Step 2: Cut column C1 into 3 equal width subcolumns. Above the right-
most subcolumn place 3 blocks of 3 · h1 = 3 · (3 · 4) = 36 spacer intervals for
a total of 4 · (3 · (3 · 4)) = (3 · 4)2 spacers. Stack as usual.

This results in column C2 of height h2 = (3 · 4)2 = 144.

Observe that C2 is a disjoint union of four images of C1.

C2 = C1∪̇T 36C1∪̇T 72C1∪̇T 108C1

Hence define B2 = {0, 36, 72, 108} = {0, 3h1, 2 · 3h1, 3 · 3h1}.

Define A2 = {0, 12, 24} = {0, h1, 2h1}. The levels of C2 which correspond
to W are (see Figure 7)

{0, 1, 2, 12, 13, 14, 24, 25, 26} = {0, 12, 24} ⊕ {0, 1, 2}
= A1 ⊕ A2

That is, Level 0 of column C1 is divided into Level 0, Level 12 and Level 24
of column C2.

This gives the factorization of the cyclic group

{0, 1, ·, h2 − 1} =
(
A1 ⊕ A2

)
⊕
(
B1 ⊕ B2

)
Step n: Cut column Cn−1 into three equal width subcolumns. Above the
rightmost subcolumn add 3 blocks of 3 · hn−1 spaces.

This results in column Cn of height hn = (4 · 3)n

Define

Bn = {0, 3hn−1, 2 · 3hn−1, 3 · 3hn−1}
= {0, 3(4 · 3)n−1, 2 · 3(4 · 3)n−1, 3 · 3(4 · 3)n−1} (3)

Define

An = {0, 3hn−1, 2 · 3hn−1, 3 · 3hn−1}
= {0, (4 · 3)n−1, 2 · (4 · 3)n−1} (4)

This gives the factorization

{0, 1, . . . , hn − 1} =
(
⊕n1 Ai

)
⊕
(
⊕n1 Bi

)
and in the limit we have the exhaustive weakly wandering sequence for
T{0,0,3}.
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Figure 7: Step 2 T{0,0,3}

C1 Divide column and add spacers

Level 0

Lev 0 Lev 12 Lev 24

}
36 spacers

}
36 spacers

}
36 spacers

−→

...

...

...

Theorem 4 The transformation T{0,0,3} is of α-type with α = 2
3
. The set

W is exhaustive weakly wandering under the sequence

⊕∞k=1{0, 4k−13k, 2 · 4k−13k, 3 · 4k−13k}

The proof that α = 2
3

is similar to that of V3 in Section 3. The difference
is that there are more blocks of spacers in Cn+1 for column Cn to move
into. The transformations V3 and T{0,0,3} are not isomorphic but we will not
pursue that here.

4.2 Transformation T{0,1,2} with α = 1/3

We now modify the previous construction. The goal is to change the α-type
but keep the same exhaustive weakly wandering sequence. Significantly, the
only change in the construction is the distribution of the blocks of spacers.
at Step n, the column is cut in three and the same number of spacers is
added as in the construction of T{0,0,3}.

Thus we will have
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Theorem 5 The transformation T{0,1,2} is of α-type with α = 1
3
. The set

W = [0, 1) is exhaustive weakly wandering under the sequence

B = ⊕∞k=1Bk

defined in Equation 3.

4.2.1 Construction

Start with W = C0 = [0, 1) and h0 = 1.

Step 1: Cut C0 into three equal width subcolumns. As in the previous ex-
ample we will add 3 blocks of 3h0 spacer intervals for a total of 9 spacers.
However, in this construction, we place one block above the middle sub-
column and two blocks above the right subcolumn. Stack right above left
subcolumns. See Figure 8.

Column C1 has height h1 = 4 · 3 which is the same as in the previous
example.

Figure 8: Stage 1 for construction of T{0,1,2}

W = [0, 1)

−→

3 cuts

Add spacers

−→

Stack - C1

T{0,1,2}

W

W

Step 2: Cut C1 into three equal width subcolumns. Again we add 3 blocks
of 3h1 spacer intervals. There are 0 blocks placed over the first subcolumn,
1 block placed over the middle subcolumn and 2 blocks placed over the third
subcolum. Stack right over left subcolumns.

Column C2 has height h2 = (4 · 3)2 = 144 as before.

Step n: Cut Cn−1 into three equal width subcolumns. Add 3 blocks of
3hn−1 spacer intervals in the same manner. That is 1 block over the middle
subcolumn and 2 blocks placed over the third subcolum. Stack right over
left subcolumns.

Column Cn has height hn = (4 · 3)n.
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4.2.2 Observations for α = 1/3

As in the previous example we can identify the large intersections of the Cn
At the first step we see µ(TW ∩ W ) = 1/3, µ(T 3W ∩ W ) = 1/3 and

µ(T 4W ∩W ) = 1/3.
Continuing, µ(T hnCn ∩ Cn) = 1

3
µ(Cn), µ(T 3hnCn ∩ Cn) = 1

3
µ(Cn), and

µ(T 4hnCn∩Cn) = 1
3
µ(Cn). And for hn < k < hn+1 µ(T kCn∩Cn) ≤ 1

3
µ(Cn−1)

because at least two-thirds of of the column Cn has moved into spacer blocks
of Column Cn+1.

To complete the proof that α = 1
3

follows the same approximation ar-
guments as before. That is, first prove the result for sets A consisting of
disjoint levels of Cn and then approximate arbitrary sets.

4.2.3 Exhaustive Weakly Wandering Sequence

We now need to show that B (Formula 3) is exhaustive weakly wandering
for T{0,1,2}.

The issue is that C1 is not a disjoint union of images of W and Cn is not
a disjoint union of images of Cn−1.

Begin by examining column C1 at Step 1, and compare it to the union
of the images of W (see Figure 9).

C1 vs W ∪ T 3W ∪ T 6W ∪ T 9W

For T{0,1,2} W consists of 3 levels of C1. These are levels {0, 1, 5}. Ap-
plying T 3, T 6 and T 9 we get ”levels” {3, 4, 8}, {6, 7, 11} and {9, 10, 14?}.

Two problems immediately become apparent. The first is that there is a
level of C1 which is not contained in the union (this is Level 2 - the bottom
being Level 0). The second is that we don’t yet know where T 9W (Level 5)
goes (i.e. where is Level 14?) or if it is disjoint from the other images of W .
For this we analyze the situation in Step 2.

At Step 2, C1 is divided in three subintervals, and spacers are placed
appropriately at the top of the subcolumns. (See right side of Figure 9.) It
is now easy to see where the piece of W marked ”A” goes. Specifically T 9A
maps to a part of Level 2 that wasn’t covered.

Now look at the piece of W marked ”B”. This moves up by T 9 into the
spacers. There are a total of 36 spacers above the middle column. Hence
T 45B again maps to another piece of Level 2. The point is that 45 = 9+36 ∈
B1 ⊕ B2. So T 45W is one of the images of W that are in B.

Hence at Step 2, two-thirds of Level 2 has been covered. This process
continues. That is at Step 3 another two-ninths will be covered and in the
limit Level 2 will will be covered completely.

To formalize this use the language of cyclic groups and factorizations.
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Figure 9: E.W.W. for T{0,1,2}

Where is T 9W?
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5 Factorizations of Finite Cyclic Groups

We begin with the sets A1 and B1 for T{0,0,3}. We have the factorization.

{0, 1, 2} ⊕ {0, 3, 6, 9} = {0, 1, . . . 11}

Observe that B1 = {0, 3, 6, 9} is a subgroup of {0, 1, . . . 11} Modulo
12. In the construction of T{0,1,2} placing a block above the middle col-
umn corresponds to adding 3 to the third term in A1. This changes A1 to
A∗1 = {0, 1, 2 + 3} = {0, 1, 5} (see Figure 8).

This gives the factorization

{0, 1, 5} ⊕ {0, 3, 6, 9} = {0, 1, . . . 11} Mod 12

This works because {0, 3, 6, 9} is a subgroup of {0, 1, . . . 11} Mod 12 and
adding 3 leaves the coset 2 + {0, 3, 6, 9} invariant.

This works for all n. That is, adding a block of size 3hn−1 above
the middle column at Step n, changes An = {0, hn−1, 2hn−1} to A∗n =
{0, hn−1, 2hn−1 + 3hn−1} = {0, hn−1, 5hn−1}. Using the fact that Bn =
{0, 3hn−1, 2 · 3hn−1, 3 · 3hn−1} is a subgroup Modulo hn we have that

An ⊕ Bn = A∗n ⊕ Bn Mod hn



138 STANLEY EIGEN AND JOHN LINDHE

and this gives the factorization of the cyclic groups

{0, 1, . . . , hn − 1} =
(
⊕n1 A∗k

)
⊕
(
⊕n1 Bk

)
Mod hn

From this we can conclude the exhaustiveness X = ∪b∈⊕∞1 Bi
T bW and the

weakly wandering T bW ∩ T b′W = ∅ for all b, b′ ∈ ⊕∞1 Bi.
In particular, suppose Level j of Cn is not contained in ∪T bW, b ∈ ⊕n1B.

Then in Column Cn+1 the Level corresponds to Level j, Level j + hn and
Level j + hn + 3hn. But hn, hn + 3hn ∈ Bn+1. Hence exactly two-thirds
of Level j is covered in the next Step and by induction all of the Level is
covered in the limit.

To see that T bW ∩ T b′W = ∅ for all b, b′ ∈ ⊕∞1 Bi, choose n so that
max(b, b′) < 1

2
hn. Recall that ⊕n1A∗i locates which levels in Cn are part of

W . Observe that max(a) < 1
2
hn. Hence T bW and T b

′
W are contained in

Cn - by which we mean the images do not move out of Cn and need to be
modded. Hence the images are disjoint.
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6 Family of Transformations

We now have all the tools and concepts necessary to construct a sequence
satisfying Theorem 1 and the transformations Tα

6.1 Rank One Construction

In this section, we set the notation, review the general rank one construction
as used in this paper and then set some restrictions for the actual transfor-
mations.

A major difference from the examples that have gone before is that the
number of cuts at each step will increase. This is necessary to get different
α-type. For example three cuts only enabled α = 2/3 and α = 1/3.

As usual at the nth stage, column Cn−1 is cut into cn subcolumns. Above

the ith subcolumn, s
(n)
i spacers are placed. The subcolumns are stacked,

forming the new column Cn
The construction is therefore completely defined by the infinite sequence

of cuts cn ≥ 2, and the infinite sequence of sets of spacers Sn = {s(n)1 , · · · , s(n)cn }
placed above the cn subcolumns.

Using the above notation, the total number of spacers added at stage n
is |Sn| =

∑cn
i=1 s

(n)
i . The height of column Cn is then hn = cn · hn−1 + |Sn|.

6.2 Controlling for an exhaustive weakly wandering
sequence B

In order to guarantee that all the transformations to be constructed have the
same exhaustive weakly wandering sequence, we will put some restrictions
on the general rank one construction.

Restrictions.

1. Preset the cuts ck = 2k.

2. Define the block size, bk = ck · hk−1, and add the spacers in multiples
of the block size (see Section 6.3.1 for an illustration of adding the
spacers).

3. Preset the total spacers added at stage k. Specifically, sk = 22k−1 − 1
is the number of blocks of spacers of size bk added at stage k.
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From the above restrictions, the height of column Ck is also preset to hk =∏k
j=0 22j+j−1. Hence the total number of spacers added at Step k is

|Sk| =
(
22k−1 − 1

)
· ck · hk−1 = sk · bk

=
(
22k−1 − 1

)
· 2k ·

k−1∏
j=0

22j+j−1

Condition (1) is necessary to have different α-type. Condition (2), which
is related to the factorization, will insure that the same exhaustive weakly
wandering sequence works for all the transformations. Condition (3) allows
for enough blocks of spacers to control the α-type.

6.3 B and its structure

The above restrictions completely define a sequence of integers which will be
seen to satisfy Theorem 1. We will then proceed to describe the construction
of the different Tα.

The Sequence B as determined by the previous restrictions is

B = ⊕∞n=1Bn (5)

= {0, 2, 16, 18, 32, 34 · · · }

where

B1 = {0, 2}
B2 = {0, 16, 32, 48, 64, 80, 96, 112}
B3 = {0, 1024, 2048, 3072, 4096, 5120 · · · 130048}

...

Bk = {0, bk, 2 · bk, 3 · bk, · · · , (22k−1 − 1) · bk} (6)

...

where the block sizes are

bk = 2k ·
k−1∏
j=0

22j+j−1
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6.3.1 Distributing the spacers

Since the number of cuts and the total number of spacers are preset, the
variations for the transformations come from the alternate distributions of
the blocks of spacers over the subcolumns.

Rule: The basic rule we want to follow is that the total spacers above sub-
column k should be large enough to absorb all the previous subcolumns and
spacers.

Here is an illustration. Suppose we were going to cut a column of height
h = 1 into c = 4 pieces. So the block size would be b = 4 · 1 = 4.

We start by putting 0 blocks above the first subcolumn, 1 block above
the second subcolumn, 2 blocks above the third subcolumn and 4 blocks
above the fourth subcolumn. This is a total of 7 blocks. See left-side of
Figure 10.

Notationally we represent this as S = {0, 1, 2, 4} · 4 = {0, 4, 8, 16}.
These 7 blocks can be rearranged, and still satisfy the rule by distributing

the spacer blocks as S = {0, 0, 2, 5} · 4 and S = {0, 0, 0, 7} · 4, See middle
and right of Figure 10.

Relating this to factorizations of cyclic groups we have

{0, 1, . . . , 31} = {0, 1, 5, 15} ⊕ {0, 4, 8, 12, 16, 20, 24, 28} Mod 32

= {0, 1, 2, 11} ⊕ {0, 4, 8, 12, 16, 20, 24, 28} Mod 32

= {0, 1, 2, 3} ⊕ {0, 4, 8, 12, 16, 20, 24, 28}

This would be part of a step leading to a common exhaustive weakly wan-
dering sequence.

Relating this to α-type, we see that the left image in Figure 10 could
lead to α = 1/4; the middle image could lead to α = 1/2; and the right
image to α = 3/4.
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Figure 10: Three variations of adding spacers
3 Variations of adding spacers:
Start with the Unit Interval W
Cut into c = 4 pieces
Add s = 7 blocks of b = 4 spacers

u
0

u
0

u
0

6.4 Allowed Spacer Block Distributions

Assume now, that any transformation constructed satisfies Restrictions 1, 2
and 3.

Restriction 2, indicates that the spacers are added in certain block sizes.
Restriction 3, indicates that the total number of blocks of spacers is fixed at
each step.

Now we add a further condition indicating how the blocks of spacers are
distributed over the subcolumns.

At Step n we divide column Cn−1 into cn = 2n pieces. The block size is
set at bn = cnhn−1. The total number of blocks of spacers to be added is set
at 22n−1 − 1. However, we only allow them to be distributed as follows.

Allowed Distributions

S = {0, 1, 2, 4, · · · , 22n−2} · bn
= {0, 0, 2, 4, · · · , 22n−2+ + 1} · bn
= {0, 0, 0, 4, · · · , 22n−2 + 1 + 2} · bn

...

= {0, 0, · · · , 0, 22m−1 − 1} · bn (7)
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6.5 A Class of Transformations

Let T denote the class of all transformations constructed as rank one trans-
formations and satisfying Restrictions 1, 2 and 3. Additionally assume that
at each step in the construction of an indivdual T that the the spacers are
distributed by one of the allowed distributions.

The set W = [0, 1) denotes the common base over which all the trans-
formations are built.

Theorem 6 Every transformation T ∈ T is infinite measure preserving
and ergodic. The set W is exhaustive weakly wandering for the sequence B
given in Equation 5.

Let T ∗ denote the transformation which uses Distribution 7 at every step.
As with the Hajian-Kakutani transformation the Columns Cn are filled up
exactly at each step. Hence it is immediate that B is an exhaustive weakly
wandering sequence fot T ∗. That is we have factorizations (recall that ⊕n1Ai

corresponds to levels of W in Column Cn)

{0, 1, . . . , hn − 1} = ⊕n1Ai

⊕
⊕n1Bi

and modding is not necessary.
For an arbitrary T , each Ai is modified to a A∗i but we still have factor-

izations
{0, 1, . . . , hn − 1} = ⊕n1A∗i

⊕
⊕n1Bi Mod hn

The exhaustiveness and weakly wandering properties follow as before.

6.6 Controlling for α-type

Now we show how to modify the construction in order to get a transformation
of α-type for any 0 ≤ α ≤ 1.

The following holds for more than just the transformations in T .

Theorem 7 If in the general construction the following holds (See Figure
11)

1. ck > 1

2. nk < ck such that limk→∞
nk

ck
= α

3. s
(k)
i = 0 for 1 ≤ i ≤ nk

4. s
(k)
j+1 ≥

∑j
i=1 s

(k)
i + j · hk−1, j ≥ nk
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Figure 11: Controlling Spacers for α-type

· · ·

←− nk −→
ck cuts� -

s
(k)
nk+1 s

(k)
ck

· · ·


hk−1

then T is of α-type

The conditions on the spacers guarantee that µ(T hkCk ∩ Ck) = nk

ck
for

all k. For nk < j < nk+1, µ(T jCk ∩ Ck) ≤ max(nk

ck
, nk+1

ck+1
). The same holds

for sets A which are disjoint unions of Ck and then for arbitrary sets by an
approximation argument.
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